Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Dual function of lectins — new perspectives in targeted photodynamic therapy

    Porphyrins and phthalocyanines are photosensitizers (PS) that are used in clinical imaging, detection of cancer cells and are particularly applied in photodynamic therapy (PDT). Many scientists have been focused on the design of different porphyrin compounds. However, similar to other anti-cancer agents, they cannot selectively recognize tumor tissues. Scientists are seeking new methods to overcome this problem and to find appropriate targeted delivery strategies. Plant lectins are especially suitable molecules for such targeting as they preferentially recognize specific antigens on the glycosylated cancer cells. This review will give more detailed information about the dual function of lectins and their interactions with PSs, which is a new perspective in targeted PDT. The implications and potential applications of such studies will also be discussed.

  • articleNo Access

    INTEGRATED PROCESS TARGETING AND PRODUCT UNIFORMITY MODEL FOR THREE-CLASS SCREENING

    In this paper a process targeting model for three class screening problem is developed. The model developed, extends the work in the literature by incorporating product uniformity. The product uniformity is introduced via a Taguchi type quadratic loss function. Two cases for the process Targeting are considered. In addition, an illustrative example is presented. Sensitivity analysis is also conducted to study the effect of model parameters on expected profit and optimal process mean.

  • articleNo Access

    APPLICATION OF TECHNETIUM AND RHENIUM IN NUCLEAR MEDICINE

    COSMOS01 Jun 2012

    Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re, which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc-based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.