Computer simulation of industrial processes is an important alternative that may be used either to complement or to replace expensive experimental procedures associated with developing new parts or modifying existing process. For a metal cutting process, numerical simulations provide vital information about cutting forces, cutting temperatures, tooling and part distortion, etc. Since the early 1970s, FEA has been applied to simulate machining process. The development of this approach, its assumptions and techniques has been widely accepted. Nowadays, the manufacturing productivity even drives the community to the next level innovation through computer utilizations. A kinematic simulation of machining processes is one of many innovative CAE applications, especially beneficial to high volume production of automotive powertrain parts. In this paper, a generic force calculation method is introduced with a modified horsepower correction factor. An example of sizing milling force, milling paths and proper milling parameters is provided by utilizing the methodology. This paper will also discuss and propose how the manufacturing industry uses this resourceful tool. Applications of the methodology would empower product and manufacturing engineers to make intelligent and cost effective decisions.