Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Trajectory Privacy Protection Based on Location Semantic Perception

    A personalized trajectory privacy protection method based on location semantic perception to achieve the personalized goal of privacy protection parameter setting and policy selection is proposed. The concept of user perception is introduced and a set of security samples that the user feels safe and has no risk of privacy leakage is set by the user’s personal perception. In addition, global privacy protection parameters are determined by calculating the mean values of multiple privacy protection parameters in the sample set. The concept of location semantics is also introduced. By anonymizing the real user with k collaborative users that satisfy the different semantic conditions, (k+1) query requests which do not have the exact same query content and contain precise location information of the user and the collaborative user are sent to ensure the accuracy of the query results and avoid privacy-leaks caused by the query content and type. Information leakage and privacy level values are tested for qualitative analysis and quantitative calculation of privacy protection efficacy to find that the proposed method indeed safeguards the privacy of mobile users. Finally, the feasibility and effectiveness of the algorithm are verified by simulation experiments.

  • articleOpen Access

    The Effects of Robot Voices and Appearances on Users’ Emotion Recognition and Subjective Perception

    As the influence of social robots in people’s daily lives grows, research on understanding people’s perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots’ emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots’ voice types, appearances, and emotions. In our experiment, 20 participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot’s profiles through post surveys. The results indicate that (1) the accuracy of emotion perception differed depending on presented emotions, (2) a regular human voice showed higher user preferences and naturalness, (3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and (4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study (N=10) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users.