Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Optimizing Acoustic Performance and Structural Integrity of the Oud

    This paper presents a combined numerical and experimental investigation into the vibroacoustic behavior of a traditional oud. An experimental modal analysis was conducted using impact hammer testing to determine the oud’s soundboard’s dynamic characteristics and frequency response function for up to 400 Hz. Finite element analysis was used to model the oud, incorporating its precise geometry, the wood’s orthotropic material properties, and its interaction with the surrounding air. Validation was performed by matching the numerical and experimental mode shapes and the natural frequencies. Harmonic acoustic analysis examined the oud’s sound pressure level radiation and cavity resonance. Structural–acoustic optimizations were conducted systematically, varying the soundhole’s size, the soundboard’s thickness, and the dimensions of the internal bracing to maximize the acoustics properties while minimizing the structural stress. The effects of these geometric factors on the instrument’s tonal characteristics were quantified. The results provide physical insights into the relationship between the oud’s construction and sound production. The methodology demonstrates a rigorous approach combining simulations and experimentation to comprehensively evaluate and optimize the vibroacoustic behavior of a musical instrument. This fundamental understanding could guide future improvements in the design of ouds.

  • articleNo Access

    THE FINITE STRIP METHOD FOR ACOUSTIC AND VIBROACOUSTIC PROBLEMS

    The finite strip method, widely employed in structural mechanics, is extended to solve acoustic and vibroacoustic problems. The acoustic part of the formulation, including how to handle the most typical acoustic boundary conditions and the fluid structure interaction, is presented. Several realistic problems where the three-dimensional domain of interest has extrusion symmetry are solved. These examples illustrate the advantages of the method: it has smaller computational costs than the finite element method and consequently the analyzed frequency range can be increased.

  • articleOpen Access

    Parameter Identification of a Large-Scale Vibroacoustic Finite Element Model with a One-Dimensional Convolutional Neural Network

    Uncertainties are significant in the early vibroacoustic development, e.g., of a car body, to prevent costly modifications close to the start of production. First, engineers must know which uncertain parameters are sensitive: Our previous work identified 170 uncertain parameters being sensitive out of a complex finite element model with 1,300 uncertain parameters – a parameter reduction of approximately 87%. Second, engineers aim to find reliable distributions of these sensitive input parameters for finite element simulations. Finding these distributions is very demanding in a large-scale vibroacoustic model with several connecting parameters, as research already acknowledges regarding simplified connections. In this paper, we address this challenge with neural networks. For this, we use data in the frequency domain. Due to the curse of dimensionality, it is difficult to determine the parameter set of 170 parameters with a neural network. Therefore, we examine the influence of the number of parameters on the performance of neural networks. Furthermore, we train a fully connected feed-forward neural network and compare this to a one-dimensional convolutional neural network. The latter exhibits a better performance. Finally, we show how to determine distributions of the analyzed parameters based on artificial measurement data. Due to this process, we can significantly improve our finite element simulations and show how to deal with the challenge of determining uncertain parameters in a large-scale vibroacoustic finite element model based on data in the frequency domain.

  • articleFree Access

    Scattering From a Partially Coated Shell Immersed in Water Using a Subtractive Modelling Technique

    In this study, we focus on the prediction of the pressure field scattered from an immersed cylindrical shell partially coated by a soft rubber, impacted by an acoustic plane wave. As the coating covers only a partial portion along the circumference of the shell, the considered system is not axisymmetric. As a result, a spectral (Fourier) resolution of the mathematical problem would induce the coupling of the different circumferential orders, which can lead to prohibitive computing times. To circumvent this issue, the reverse Condensed Transfer Function (rCTF) method has recently been developed to decouple vibroacoustic subsystems initially coupled along lines or surfaces. From an analytical model of the fully coated shell impacted by the acoustic plane wave and a finite element (FE) model of the missing coating material, the rCTF approach predicts the vibroacoustic behavior of the coated shell with a voided section instead of the removed part. This voided section can then be filled by a FE model of the water domain replacing the removed coating material, using the direct CTF approach. The principle of the rCTF approach, some numerical validations, and results for the scattering from the partially coated shell are presented in this paper.