Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • chapterOpen Access

    The first results of PandaX-4T

    Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.

  • chapterOpen Access

    Indirect search for dark matter with neutrino telescopes

    The quest to understand the nature dark matter is one of the most relevant ones in Particle Physics nowadays, since it constitutes most of the matter of the Universe and it is still unknown what it is made of. In order to answer to this question, a multi-front attack is needed because our knowledge of its properties is very incomplete. Among the different experimental strategies, neutrino telescopes are very relevant tools. There are several promising sources to look at: the Sun, the Galactic Center, the Earth, dwarf galaxies, galaxy clusters… As an example of the power of neutrino telescopes, we can mention the analysis of the Sun, which offers the best sensitivity for spin dependent WIMP-nucleon scattering and is free of alternative astrophysical interpretations. In this talk I will review the status and prospects of the main present and future neutrino telescopes: ANTARES, IceCube and KM3NeT.