Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical study of droplet breakup in an asymmetric T-junction microchannel with different cross-section ratios

    https://doi.org/10.1142/S0129183122500231Cited by:25 (Source: Crossref)

    In this study, numerical simulations are conducted to investigate droplet breakup in an asymmetric T-junction microchannel with different cross-section ratios. To this approach, a two-phase model based on the volume of fluid (VOF) method is adopted to study the three-dimensional feature of droplet motion inside T-junctions. The comparison reveals that the present results are in good agreement with previous studies. The effects of the capillary number (Ca), the non-dimensional droplet length (L), and the non-dimensional width ratio (W) on the breakup time and splitting ratio of daughter droplets are studied. Five distinct regimes are observed involving the non-breakup, breakup with tunnel, breakup without tunnel, asymmetric breakup, and sorting. Achieved results indicate that the time of breakup (tbreakup) increases about 15% when the Ca is increased from 0.0134 to 0.0268 (about 100%). It is also found that the mass center of the mother droplet in the primary channel is shifted to a larger wide branch, which facilitates the asymmetric breakup of the droplet in a T-junction microchannel.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!