World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NOVEL CCII-BASED TUNABLE INDUCTANCE AND HIGH FREQUENCY CURRENT-MODE BAND PASS FILTER APPLICATION

    https://doi.org/10.1142/S0218126606003386Cited by:5 (Source: Crossref)

    In this paper, we introduce an implementation of a CCII-based grounded inductance operating in class AB. In order to get tunable characteristics of the design, a translinear CCII configuration is used as a basic block for its high level of controllability. A frequency characterization of the translinear CCII is done. In order to optimize its static and dynamic characteristics, an algorithmic driven methodology is developed ending to the optimal transistor geometries. The optimized CCII has a current bandwidth of 1.28 GHz and a voltage bandwidth of 5.48 GHz. It is applied in the simulated inductance design. We first consider the conventional topology of the grounded inductance based on the generalized impedance converter principle. Making use of the controllable series parasitic resistance at port X in translinear CCII, we design tunable characteristics of the inductance. The effect of current conveyor's nonidealities has been taken into account. A compensation strategy has been presented. It is based on the insertion of a high active CCII-based negative resistance and a very low passive resistance. The compensation strategy does not affect the inductance tuning process. Simulation results show that the proposed inductance can be tuned in the range [0.025 μH; 15.4 μH]. The simulated inductance has been applied in a fully integrated tunable high frequency band pass filter to illustrate the versatility of the circuit. The filter is electrically tunable by controlling the conveyor's bias current.