EVOLVING DECISION TREES IN HARDWARE
Abstract
This paper, according to the best of our knowledge, provides the very first solution to the hardware implementation of the complete decision tree inference algorithm. Evolving decision trees in hardware is motivated by a significant improvement in the evolution time compared to the time needed for software evolution and efficient use of decision trees in various embedded applications (robotic navigation systems, image processing systems, etc.), where run-time adaptive learning is of particular interest. Several architectures for the hardware evolution of single oblique or nonlinear decision trees and ensembles comprised from oblique or nonlinear decision trees are presented. Proposed architectures are suitable for the implementation using both Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC). Results of experiments obtained using 29 datasets from the standard UCI Machine Learning Repository database suggest that the FPGA implementations offer significant improvement in inference time when compared with the traditional software implementations. In the case of single decision tree evolution, FPGA implementation of H_DTS2 architecture has on average 26 times shorter inference time when compared to the software implementation, whereas FPGA implementation of H_DTE2 architecture has on average 693 times shorter inference time than the software implementation.