World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HARDWARE IMPLEMENTATION OF DECISION TREE ENSEMBLES

    https://doi.org/10.1142/S0218126613500321Cited by:7 (Source: Crossref)

    In this paper, several hardware architectures for the realization of ensembles of axis-parallel, oblique and nonlinear decision trees (DTs) are presented. Hardware architectures for the implementation of a number of ensemble combination rules are also presented. These architectures are universal and can be used to combine predictions from any type of classifiers, such as decision trees, artificial neural networks (ANNs) and support vector machines (SVMs). Proposed architectures are suitable for the implementation using Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC). Experiment results obtained using 29 datasets from the standard UCI Machine Learning Repository database suggest that the FPGA implementations offer significant improvement in the classification time in comparison with the traditional software implementations. Greatest improvement can be achieved using the SP2-P architecture implemented on the FPGA achieving 416.53 times faster classification speed on average, compared with the software implementation. This result has been achieved on the FPGA working at 135.51 MHz on average, which is 33.21 times slower than the operating frequency of the general purpose computer on which the software implementation has been executed.

    This paper was recommended by Regional Editor Piero Malcovati.