World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on IEEE International Conference of Electron Devices and Solid-State Circuits; Guest Editor: Jianguo MaNo Access

A CMOS LOW-POWER TEMPERATURE-ROBUST RSSI USING WEAK-INVERSION LIMITING AMPLIFIERS

    https://doi.org/10.1142/S0218126613400343Cited by:5 (Source: Crossref)

    This paper presents a low-power CMOS receiving signal strength indicator (RSSI). The main architecture of the circuit adopts a six-stage limiting amplifier (LA) in a logarithmic-linear form, which shows a good performance in weak signal detection. The RSSI achieves high tolerance to process, voltage, and temperature (PVT) variations by utilizing the unique nature of branch currents in a transconductance amplifier. The power consumption is decreased by using the weak-inversion LAs. Full-waveform current rectification and summation are employed in the RSSI circuit to achieve high precision while maintaining low power consumption. Measured results show that in the 1 kHz–50 MHz frequency range, the input dynamic range is wider than 70 dB within ±2 dB linearity error. The chip occupies an area of 0.7 mm2 × 0.3 mm2 using a 0.18-μm CMOS. It draws 1.3 mA from a 1.8 V supply.