World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of Crosstalk-Induced Effects in Multilayer Graphene Nanoribbon Interconnects

    https://doi.org/10.1142/S021812661750102XCited by:10 (Source: Crossref)

    Crosstalk effects in multilayer graphene nanoribbon (GNR) interconnects for the future nanoscale integrated circuits are investigated with the help of ABCD parameter matrix approach for intermediate- and global-level interconnects at 11nm and 8nm technology nodes. The worst-case crosstalk-induced delay and peak crosstalk noise voltages are derived for both neutral and doped zigzag GNR interconnects and compared to those of conventional copper interconnects. The worst-case crosstalk delays for perfectly specular, doped multilayer GNR interconnects are less than 4% of that of copper interconnects for 1mm long intermediate interconnects and less than 7% of that of copper interconnects for 5mm long global interconnects at 8nm node. As far as the worst-case peak crosstalk noise voltage is concerned, neutral GNR interconnects are slightly better performing than their doped counterparts. But from the perspective of overall noise contribution, doped GNR interconnects outperform neutral ones for all the cases. Finally, our analysis shows that from the signal integrity perspective, perfectly specular, doped multilayer zigzag GNR interconnects are a suitable alternative to copper interconnects for the future-generation integrated circuit technology.

    This paper was recommended by Regional Editor Emre Salman.