Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Novel Approach to Analyze Crosstalk for a Multi-Line Bus System at 32-nm Technology

    https://doi.org/10.1142/S0218126620502163Cited by:1 (Source: Crossref)

    This research paper presents a novel approach to analyze the crosstalk-induced delay of multi-layered graphene nanoribbon (MLGNR) and multi-walled carbon nanotube (MWCNT) interconnects. A multi-line driver-interconnect-load (DIL) system is employed to analyze the crosstalk-induced delay for different switching transitions. The interconnect lines of the proposed DIL are said to be operated by either a resistive or a CMOS, or a CNFET driver for different switching transitions at 32-nm technology. Using the unique CNFET driver, the victim line of the multi-level MLGNR/MWCNT-based bus system experiences a delay almost 57.25% and 31.62% lesser in comparison to a resistive driver and a CMOS interconnect driver, respectively. Additionally, the overall worst-case delays are reduced by 89.45% and 98.98% for MLGNR in comparison to an equivalent MWCNT at 100μm and 1,000μm interconnect lengths, respectively.

    This paper was recommended by Regional Editor Emre Salman.