Approximate Compressor-Based Multiplier Design Methodology for Error-Resilient Digital Signal Processing
Abstract
As many digital signal processing (DSP) applications such as digital filtering are inherently error-tolerant, approximate computing has attracted significant attention. A multiplier is the fundamental component for DSP applications and takes up the most part of the resource utilization, namely power and area. A multiplier consists of partial product arrays (PPAs) and compressors are often used to reduce partial products (PPs) to generate the final product. Approximate computing has been studied as an innovative paradigm for reducing resource utilization for the DSP systems. In this paper, a 4:2 approximate compressor-based multiplier is studied. Approximate 4:2 compressors are designed with a practical design criterion, and an approximate multiplier that uses both truncation and the proposed compressors for PP reduction is subsequently designed. Different levels of truncation and approximate compression combination are studied for accuracy and electrical performance. A practical selection algorithm is then leveraged to identify the optimal combinations for multiplier designs with better performance in terms of both accuracy and electrical performance measurements. Two real case studies are performed, i.e., image processing and a finite impulse response (FIR) filter. The design proposed in this paper has achieved up to 16.96% and 20.81% savings on power and area with an average signal-to-noise ratio (SNR) larger than 25dB for image processing; similarly, with a decrease of 0.3dB in the output SNR, 12.22% and 30.05% savings on power and area have been achieved for an FIR filter compared to conventional multiplier designs.
This paper was recommended by Regional Editor Tongquan Wei.