World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BLOCKCHAIN CNN DEEP LEARNING EXPERT SYSTEM FOR HEALTHCARE EMERGENCY

    https://doi.org/10.1142/S0218348X21502273Cited by:10 (Source: Crossref)

    This paper relates to the field of Artificial Intelligence, specifically to image recognition, and provides an innovative method to take advantage of Blockchain Convolutional Neural Networks (BCNNs) in Emotion Recognitions (ERs) using audio–visual emotion patterns to determine a healthcare emergency to be attended. BCNN architectures were used to identify emergency patterns. The results obtained indicate that the proposed method is adequate for the classification and identification of audio–visual patterns using deep learning (DL) with Restricted Boltzmann Machines (RBMs). It is concluded that it is sufficient to consider the audio–visible key features obtained from the patient’s face and voice of the proposed model to recognize a healthcare emergency for immediate action. “Sense of urgency” and “with urgency but with self-control” are the emotion profiles considered for a healthcare emergency, and user personal emotion profiles are stored in the Blockchain ecosystem since they are deemed sensitive data.