World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Typical dynamics and fluctuation analysis of slow–fast systems driven by fractional Brownian motion

    https://doi.org/10.1142/S0219493721500301Cited by:7 (Source: Crossref)

    This paper studies typical dynamics and fluctuations for a slow–fast dynamical system perturbed by a small fractional Brownian noise. Based on an ergodic theorem with explicit rates of convergence, which may be of independent interest, we characterize the asymptotic dynamics of the slow component to two orders (i.e. the typical dynamics and the fluctuations). The limiting distribution of the fluctuations turns out to depend upon the manner in which the small-noise parameter is taken to zero relative to the scale-separation parameter. We study also an extension of the original model in which the relationship between the two small parameters leads to a qualitative difference in limiting behavior. The results of this paper provide an approximation, to two orders, to dynamical systems perturbed by small fractional Brownian noise and incorporating multiscale effects.

    AMSC: 60G22, 60H10, 60H07, 60H05