Nanodiamonds (NDs) have unique optical and mechanical characteristics, surface chemistry, extensive surface area and biocompatibility, and they are nontoxic, rendering them suitable for a diverse range of applications. Recently, NDs have received significant attention in nano-biomedical engineering. This review discusses the recent advancement of NDs’ biomedical engineering, historical background, basic introduction to nanoparticles and development. We summarize NDs’ synthesis technique, properties and applications. Two methodologies are used in ND synthesis: bottom-up and top-down. We cover synthesis methods, including detonation, ball milling, laser ablation, chemical vapor deposition (CVD) and high pressure and high temperature (HPHT); discuss the properties of NDs, such as fluorescence and biocompatibility. Due to these properties, NDs have potential applications in biomedical engineering, including bioimaging, biosensing, drug delivery, tissue engineering and protein mimics. Further, it provides an outlook for future progress, development and application of NDs in biological and biomedical areas.