Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics

    In recent years, the emergence of the ultrawide‐bandgap (UWBG) semiconductor materials that have an extremely large bandgap, exceeding 5eV including AlGaN/AlN, diamond, β-Ga2O3, and cubic BN, provides a new opportunity in myriad applications in electronic, optoelectronic and photonics with superior performance matrix than conventional WBG materials. In this review paper, we will focus on high power and high frequency devices based on two most promising UWBG semiconductors, β-Ga2O3 and diamond among various UWBG semiconductor devices. These two UWBG semiconductors have gained substantial attention in recent years due to breakthroughs in their growth technique as well as various device engineering efforts. Therefore, we will review recent advances in high power and high frequency devices based on β-Ga2O3 and diamond in terms of device performance metrics such as breakdown voltage, power gain, cut off frequency and maximum operating frequency.

  • articleNo Access

    Calculation of Percolation Thresholds in High Dimensions for FCC, BCC and Diamond Lattices

    Site and bond percolation thresholds are calculated for the face centered cubic, body centered cubic and diamond lattices in four, five and six dimensions. The results are used to study the behavior of percolation thresholds as a functions of dimension. It is shown that the predictions from a recently proposed invariant for percolation thresholds are not satisfactory for these lattices.

  • articleNo Access

    Diamonds, compactness, and measure sequences

    We establish the consistency of the failure of the diamond principle on a cardinal κ which satisfies a strong simultaneous reflection property. The result is based on an analysis of Radin forcing, and further leads to a characterization of weak compactness of κ in a Radin generic extension.

  • chapterNo Access

    Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics

    In recent years, the emergence of the ultrawide‐bandgap (UWBG) semiconductor materials that have an extremely large bandgap, exceeding 5eV including AlGaN/AlN, diamond, β-Ga2O3, and cubic BN, provides a new opportunity in myriad applications in electronic, optoelectronic and photonics with superior performance matrix than conventional WBG materials. In this review paper, we will focus on high power and high frequency devices based on two most promising UWBG semiconductors, β-Ga2O3 and diamond among various UWBG semiconductor devices. These two UWBG semiconductors have gained substantial attention in recent years due to breakthroughs in their growth technique as well as various device engineering efforts. Therefore, we will review recent advances in high power and high frequency devices based on β-Ga2O3 and diamond in terms of device performance metrics such as breakdown voltage, power gain, cut off frequency and maximum operating frequency.

  • chapterNo Access

    SCANNING PROBE ARRAYS FOR NANOSCALE IMAGING, SENSING, AND MODIFICATION

    Nanofabrication01 Mar 2008

    Nowadays tools based on Scanning Probe Methods (SPM) have become indispensable in a wide range of applications such as cell imaging and spectroscopy, profilometry, or surface patterning on a nanometric scale. Common to all SPM techniques is a typically slow working speed which is one of their main drawbacks. The SPM speed barrier can be improved by operating a number of probes in parallel mode. A key element when developing probe array devices is a convenient read-out system for measurements of the probe deflection. Such a read-out should be sufficiently sensitive, resistant to the working environment, and compatible with the operation of large number of probes working in parallel. In terms of fabrication, the geometrical uniformity i.e. the realisation of large numbers of identical probes, is a major concern but also the material choice compatible with high sensitivity, the detection scheme and the working environment is a challenging issue. Examples of promising applications using parallel SPM are dip-pen-nanolithography, data storage, and parallel imaging.

  • articleNo Access

    Effects of hydrogen on diamond single crystal synthesized under high pressure and high temperature

    In this paper, diamond single crystals doped with LiH and boron additives were synthesized in Fe64Ni36C system under high pressure and high temperature. Under the fixed pressure condition, we found that the synthesis temperature increased slightly after the addition of LiH in the synthesis system. The {100}-orientated surface morphology was investigated by scanning electron microscopy (SEM). The nitrogen concentration in the obtained diamond was analyzed and evaluated using Fourier transmission infrared spectroscopy (FTIR). Furthermore, the electrical properties of Ib-type and boron-doped diamond before and after hydrogenation using Hall effect measurement, which suggested that the conductivity of diamond co-doped with hydrogen and boron was obviously enhanced than that of boron-doped diamond.

  • articleNo Access

    Synthesis and characterization of diamond with KBH4 additive under high pressure and high temperature conditions

    In this paper, diamond single crystals have been successfully synthesized with potassium berohydride (KBH4) additive from 0 wt.% to 0.4 wt.% in the NiMnCo–C system at 6 GPa and temperature range of 1300C–1350C by temperature gradient growth (TGG) method. The results of experiments showed that the color of diamond crystals changed from light yellow to dark blue to black, as the KBH4 content increases from 0 wt.% to 0.4 wt.%. The results of FTIR absorption spectroscopy showed that the peaks of boron-related enhanced with an increase of KBH4 additive. The XPS results showed that the boron, hydrogen, nitrogen and oxygen coexisted in the diamond crystal. The results of Hall effect measurements indicated that the synthesized diamonds using KBH4 as additive presented p-type semiconductor characterizations. The Hall mobility was nearly equivalent between diamond crystals of with 0.2 wt.% and 0.4 wt.% KBH4 additive, but which was all extremely low due to scattering causing by N and O defects. While the concentrations of carrier and conductivity of the co-doped diamonds enhanced with increasing KBH4 additive.

  • articleFree Access

    Compactness and guessing principles in the Radin extensions

    We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on κ, if κ is weakly compact, then (κ) holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle fails at a strongly inaccessible Mahlo cardinal. Refining the analysis of the Radin extensions, we consistently demonstrate a scenario where a compactness principle, stronger than the diagonal stationary reflection principle, holds yet the diamond principle fails at a strongly inaccessible cardinal, improving a result from [O. B. -Neria, Diamonds, compactness, and measure sequences, J. Math. Log. 19(1) (2019) 1950002].

  • articleNo Access

    Synthesis of LaMnO3–Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

    Nano01 Oct 2018

    In this study, a series of LaMnO3–diamond composites with varied LaMnO3 mass contents supported on micro-diamond have been synthesized using a sol–gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet–visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of LaMnO3 is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of LaMnO3 and diamond is 1:2 (LMO–Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.

  • articleNo Access

    HYDROGEN BONDING IN DIAMOND: A COMPUTATIONAL STUDY

    We present tight binding molecular dynamics simulations of the diffusion and bonding of hydrogen in bulk diamond. The motion of hydrogen atoms and the resultant structural and electronic energy level changes are investigated. The hydrogen atoms were found to have a tendency to migrate to the surface layer of diamond, resulting in a local deformation of the lattice, creating new energy states above and below the Fermi energy in the bandgap of the diamond density of states. In the diamond bulk, at high hydrogen concentrations, vacancies created by a hydrogen atom are quickly filled with other hydrogen atoms causing a deformation of the diamond lattice, inducing H2 formation. This creates new energy states above the Fermi energy and reduces the secondary bandgap of the diamond density of states.

  • articleNo Access

    THE SPIN HAMILTONIAN PARAMETERS CALCULATION OF 14N AND 15N IN NATURAL TYPE I DIAMOND

    The main purpose of this work is to present the ESR spectra and calculate the spin Hamiltonian parameters of 14N and 15N impurities in natural diamond. The ESR spectra of diamond crystal were measured on ESR spectrometer operating at X-band microwave frequency. The results of ESR spectra show that the diamond has a P1 center. This center gives rise to three strong resonance absorption peaks at θ = 90°, φ = 0° due to hyperfine interaction between electron spin and nuclear spin of 14N. The ESR spectra of 15N impurity consist of two satellites at the same rotation angle (φ). The effects of isolated substitution nitrogen on carbon atom produced a symmetric distortion from Td to C3V symmetry. According to this symmetry, the resonance magnetic field positions of ESR spectra for the rotation angles of 0°, 90° and 180° are almost overlap. The g-factor values and spin Hamiltonian parameters of 14N and 15N are: g = 2.0019, A = 29.73, A = 40.24 and g = 2.0019, A = −39.90, A = −57.05, respectively.

  • articleNo Access

    DETONATION OF MOLECULAR PRECURSORS AS A TOOL FOR THE ASSEMBLY OF NANO-SIZED MATERIALS

    The detonation of carbon- or nitrogen-containing explosives not only produces powerful shock waves but also provides elemental building blocks and a unique high-pressure and high-temperature physical environment for the construction of various nanostructures. This review highlights the situation and key progresses in the detonation approach towards diamond nanoparticles, graphitic carbon nanotubes, fullerene molecules, and gallium nitride nanocrystals. Further extension of the peaceful-use detonation applications and rational reactor design are also proposed.

  • chapterNo Access

    ATOMIC FORCE MICROSCOPE LITHOGRAPHY

    Nanofabrication01 Mar 2008

    Atomic force microscopy (AFM) was originally developed for atomic resolution surface topography observations. Nowadays, it is also widely used for nanolithography. AFM-based lithography is an effective method compared to conventional photolithographic processes due to its simplicity, high resolution, and low cost. It can provide nanoscale stage control and the probing tip can be used as a lithographic tool. Therefore, various AFM-based nanoscale fabrication methods have been proposed using electrochemical oxidation, material transfer, mechanical lithography, and thermally induced modifications. This chapter will introduce the detailed processes and applications of AFM-based lithographic techniques.