he history of cosmic expansion can be accurately traced using Type Ia supernovae (SN Ia) as standard candles. Over the past 40 years, this effort has improved its precision and extended its reach in redshift. Recently, the distances to SN Ia have been measured to a precision of ~5% using luminosity information that is encoded in the shape of the supernova's rest frame optical light curve. By combining observations of supernova distances as measured from their light curves and redshifts measured from spectra, we can detect changes in the cosmic expansion rate. This empirical approach was successfully exploited by the High-Z Supernova Team and by the Supernova Cosmology Project to detect cosmic expansion and to infer the presence of dark energy. The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess for this discovery. The world's sample of well-observed SN Ia light curves at high redshift and low, approaching 1000 objects, is now large enough to make statistical errors due to sample size a thing of the past. Systematic errors are now the challenge. To learn the properties of dark energy and determine, for example, whether it has an equation-of-state that is different from the cosmological constant demands higher precision and better accuracy. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from uncertain knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not yet produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant and to improved constraints on dark energy. In the NIR, SN Ia are better standard candles and the effects of dust absorption are smaller. We have begun an HST program dubbed RAISIN (SN IA in the IR) to tighten our grip on dark energy properties