Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The essence of Huber fractal image coding (HFIC) is to predict the fractal code of a noiseless image as accurately as possible from its corrupted observation with outliers by adopting Huber M-estimation technique. However, the traditional HFIC is not quite satisfactory mainly due to the absence of contractivity restriction for the estimate of the fractal parameters (actually, it is a fundamental requirement in the theory of fractal image coding). In this paper, we introduce a primal-dual algorithm for robust fractal image coding (PD-RFIC), which formulates the problem of robust prediction of the fractal parameters with contractivity condition as a constrained optimization model and then adopts a primal-dual algorithm to solve it. Furthermore, in order to relieve using the corrupted domain block as the independent variable in the proposed method, instead of using the mean operation on a 2×2 subblock in the traditional HFIC, we apply a median operation on a larger subblock to obtain the contracted domain blocks for achieving the robustness against outliers. The effectiveness of the proposed method is experimentally illustrated on problems of image denoising with impulse noise (specifically, salt & pepper noise and random-valued noise). Remarkable improvements of the proposed method over conventional HFIC are demonstrated in terms of both numerical evaluations and visual quality. In addition, a median-based version of Fisher classification method is also developed to accelerate the encoding speed of the proposed method.
In the process of image acquisition and transmission, data can be corrupted by impulse noise. This paper presented the removal of impulse noise in medical image by using Very Large Scale Integrated circuit (VLSI) implementation. The Low Cost Reduced Simple Edge Preserved De-noising (LCRSEPD) technique is introduced using Low Area Carry Select Adder (CSLA) to remove the salt and pepper noise instead of normal adder. Thus, LCRSEPD technique preserves visual performance and edge features in terms of quality and quantitative evaluation. By optimizing the architecture, low cost RSEPD can achieve low computational complexity that will reflect in area, power and delay. Compared to the previous VLSI implementations, the LCRSEPD implementation with CSLA adder has achieved good medical image quality and less hardware cost due to the reduction of area, power and delay.
Salt-and-pepper noise suppression for vector-valued images usually employs vector median filtering, total variation L1 model, diffusion methods and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and are suitable only for images with low intensity noise. In this paper, a new method, as an important preprocessing step in cyber-physical systems, is presented to suppress salt-and-pepper noise that can overcomes this limitation. This method first detects the corrupted pixels and then restores them using channel-wise anisotropic diffusion. The means is twofold. On the one hand, the marginal approach is used to perform noise suppression separately in each channel because the contaminative pixel components are of independent distribution. On the other hand, a decision-based anisotropic diffusion method is applied to each channel to restores them. The anisotropic diffusion is an energy-dissipating process with time, and dependent on geometric analysis of shape of the energy surface. Simulation results indicate that the proposed method for impulsive noise removal achieves the state-of-the-arts results.
Fiber directional tracking through diffusion tensor magnetic resonance imaging (DT-MRI) is a promising research field in visualization and computer graphics and is widely applied in the reconstruction of fiber orientation and the structure of biological tissues. The filter technique used to blur noise in data is of critical importance for fiber directional tracking, particularly because existing tracking methods are very sensitive to impulsive noise. In this paper, a mixed filter of the 3D Gauss and directional distance filter (GDDF) is proposed to suppress noises in corrupted vector fields. Simulation results and objective evaluation of vector datasets demonstrate that GDDF not only possesses the capability of noise attenuation but also preserves vector directions. By validating the simulated vector data against experimental heart data, it is also shown that the GDDF is an effective and stable preprocessing method that accurately reconstructs fiber orientation.
The interest of this paper is in reduction of impulse noise in digital color images. The two main methods used for noise reduction in images are the mean and median filters. These techniques operate by replacing the test pixel in a chosen window by a new filtered pixel value. The window is made to iteratively slide across the entire image to reconstruct a new noise reduced image. The mean filters suffer from the effect of smoothing out color contrast and edges due to leveraging the unrepresentative pixels in the filtering process. The vector median filter and its variants overcome this problem by considering only the most representative pixel in the chosen window. The most representative pixel, i.e. the pixel that is of highest conformity to take the place of the test pixel, is determined by minimizing the aggregate distance from one pixel to every other pixel in the window. The problem in these median filtering approaches is that only one pixel is treated as representative of all the pixels in the chosen window. This conjecture could lead to information loss due to marginalizing other pixels that also are representative of the center pixel. In this paper, we propose a selective mean filtering process to overcome the said problem. The key idea here is to determine the most representative pixels in the window using the method of aggregate distances and then compute the mean of these pixels. This approach will perform better than the vector median filters as now a set of representative pixels are leveraged into the filtering process. Simulation results show that the proposed method performs better than the conventional vector median filtering methods in terms of noise reduction and structural similarity and thus validates the proposed approach. Moreover, the method is tested on real MRI scan images in successfully reducing impulse noise for improved medical diagnosis.
The focus of this paper is impulse noise reduction in digital color images. The most popular noise reduction schemes are the vector median filter and its many variants that operate by minimizing the aggregate distance from one pixel to every other pixel in a chosen window. This minimizing operation determines the most confirmative pixel based on its similarity to the chosen window and replaces the central pixel of the window with the determined one. The peer group filters, unlike the vector median filters, determine a set of pixels that are most confirmative to the window and then perform filtering over the determined set. Using a set of pixels in the filtering process rather than one pixel is more helpful as it takes into account the full information of all the pixels that seemingly contribute to the signal. Hence, the peer group filters are found to be more robust to noise. However, the peer group for each pixel is computed deterministically using thresholding schemes. A wrong choice of the threshold will easily impair the filtering performance. In this paper, we propose a peer group filtering approach using principles of Bayesian probability theory and clustering. Here, we present a method to compute the probability that a pixel value is clean (not corrupted by impulse noise) and then apply clustering on the probability measure to determine the peer group. The key benefit of this proposal is that the need for thresholding in peer group filtering is completely avoided. Simulation results show that the proposed method performs better than the conventional vector median and peer group filtering methods in terms of noise reduction and structural similarity, thus validating the proposed approach.
Particle Swarm Optimization technique, a new evolutionary soft computational technique, has been used to eliminate the random noise present in the bio-medical images. The reconstructed images have been compared to the presently available technique such as Median Filter, etc. The results indicate that the proposed technique is a simple and accurate model to eliminate noise from highly corrupt images. This proposed method has been tested with other images including medical images like mammograms.