World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Modeling of Quantum Dot Channel (QDC) Si FETs at Sub-Kelvin for Multi-State Logic

    https://doi.org/10.1142/S0129156420400170Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Multi-state room temperature operation of SiOx-cladded Si quantum dots (QD) and GeOx-cladded Ge quantum dot channel (QDC) field-effect transistors (FETs) and spatial wavefunction switched (SWS)-FETs have been experimentally demonstrated. This paper presents simulation of cladded Si and Ge quantum dot channel (QDC) field-effect transistors at 4.2°K and milli-Kelvin temperatures. An array of thin oxide barrier/cladding (∼1nm) on quantum dots forms a quantum dot superlattice (QDSL). A gradual channel approximation model using potential and inversion layer charge density nQM, obtained by the self-consistent solution of the Schrodinger and Poisson’s equations, is shown to predict I-V characteristics up to milli-Kelvin temperatures. Physics-based equivalent circuit models do not work below 53°K. However, they may be improved by adapting parameters derived from quantum simulations. Low-temperature operation improves noise margins in QDC- and SWS-FET based multi-bit logic, which dissipates lower power and comprise of fewer device count. In addition, the role of self-assembled cladded QDs with transfer gate provides a novel pathway to implement qubit processing.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas