World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Enhancing a 32-Bit Processor Core with Efficient Cryptographic Instructions

    https://doi.org/10.1142/S0218126615501583Cited by:1 (Source: Crossref)

    Embedded processor is often expected to achieve a higher security with good performance and economical use of resource. However, the choice regarding the best solution for how cryptographic algorithms are incorporated in processor core is one of the most challenging assignments a designer has to face. This paper presents an inexpensive instruction set extensions (ISE) of efficient cryptographic algorithms on 32-bit processors assuring various types of instruction (public/private key cryptography, random number generator (RNG) and secure hash function (SHF)). These extensions provide hardware instructions that implement a full algorithm in a single instruction. Our enhanced LEON2 SPARC V8 core with cryptographic ISE is implemented using Xilinx XC5VFX70t FPGA device and an ASIC CMOS 40-nm technology. The total area of the resulting chip is about 1.93 mm2 and the estimated power consumption of the chip is 16.3 mW at 10 MHz. Hardware cost and power consumption evaluation are provided for different clock frequencies and the achieved results show that our circuit is able to be arranged in many security constrained devices.

    This paper was recommended by Regional Editor Emre Salman.