World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Fault-Tolerant and Efficient XOR Structure for Modular Design of Complex QCA Circuits

    https://doi.org/10.1142/S0218126618501153Cited by:42 (Source: Crossref)

    Despite its important existing challenges, quantum-dot cellular automata (QCA) is one of the promising replacement candidates of the traditional VLSI technology. Practical implementation issues such as fault tolerance and lack of customized CAD tools and algorithms for automatic synthesis of large complex systems are some important instances of QCA circuit design challenges. Currently, most of the research papers focus only on development of individually efficient QCA gates and circuits in terms of only their physical properties such as area and delay. However, throughout this paper, it is demonstrated that these compressed and fast individual QCA gates and circuits cause serious concerns when they are exploited as building blocks in modular design of higher level complex circuits. Some simple but effective design rules are then emphasized to solve this problem by preserving the “modular design efficiency” of the developed underlying QCA gates and circuits. As a case study, two new instances of fault-tolerant QCA XOR gates are introduced which are designed by simultaneously considering both area/delay and modular design efficiency rules. A wide range of numerical experiments are provided throughout the paper to prove the priority of the proposed gates with respect to eight other samples of the most efficient existing XOR structures, when exploiting them to build more complex circuits such as adders and error detection/correction circuits.

    This paper was recommended by Regional Editor Piero Malcovati.