A Novel Addressing Circuit for SWS-FET Based Multivalued Dynamic Random-Access Memory Array
Abstract
Multivalued memory increases the bits-per-cell storage capacity over conventional one transistor (1T) MOS based dynamic random-access memory (DRAM) by storing more than two data signal levels in each unit memory cell. A spatial wavefunction switched (SWS) field effect transistor (FET) has two vertically stacked quantum-well/quantum-dot channels between the source and drain regions. The charge location in upper or lower quantum channel region is based on the input gate voltage. A multivalued DRAM that can store more than two bits-per-cell was implemented by using one SWS-FET (1T) device and two capacitors (2C) connected to each source regions of the SWS-FET device. This paper proposes the architecture and design of peripheral circuitry that includes row/column address decoding and sensing circuit for a multivalued DRAM crossbar arrays. The SWS-FET device was modeled using analog behavioral modeling (ABM) with two transistors using conventional BSIM 3V3 device parameters in 90 nm technology. The Cadence circuit schematic simulations are presented. A compact multivalued DRAM architecture presents a new paradigm in terms of application in Neural systems that demand storage of multiple valued levels.
Remember to check out the Most Cited Articles! |
---|
Check out these Notable Titles in Antennas |