Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Darlington-Based 8T CNTFET SRAM Cell for Low Power Applications

    https://doi.org/10.1142/S0218126621502133Cited by:10 (Source: Crossref)

    The design of low power memory cells is the dream of engineers in memory design. A Darlington-based 8T CNTFET SRAM cell is suggested in this paper. It is called the proposed P_CNTFET Darlington 8T SRAM Cell. Compared with that of the traditional 6T and 8T CNTFET SRAM cells, the power and noise performances of the proposed SRAM cell are comparable. Compared to the traditional SRAM cells, the write, hold, read and dynamic power consumption of the proposed cell is much lower. The CNTFET parameters are optimized to boost the noise margin performance of the suggested bit cell. For optimized parameters, the power consumption and SNM of the proposed cell are compared with conventional cells. In contrast to the conventional cells, the HSNM and WSNM of the proposed cell are improved by 6.25% and 66.6%. The proposed cell’s RSNM is 38% greater than the traditional 6T SRAM cell. The proposed cell’s RSNM is 3.33% less than the traditional 8T SRAM cell. MOSFET is also used to implement the proposed SRAM cell and its noise margin and power performance are compared with traditional MOSFET-based SRAM cells. As with the conventional cells, the MOSFET-based implementation of the proposed cell power and SNM performance is also very good. The simulation is done with the HSPICE simulation tool using the Stanford University 32nm CNTFET model.

    This paper was recommended by Regional Editor Piero Malcovati.