Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Positive Feedback-Based Op-Amp Gain Enhancement Technique for High-Precision Applications

    https://doi.org/10.1142/S0218126620502205Cited by:10 (Source: Crossref)

    A power-efficient, voltage gain enhancement technique for op-amps has been described. The proposed technique is robust against Process, Voltage and Temperature (PVT) variations. It exploits a positive feedback-based gain enhancement technique without any latch-up issue, as opposed to the previously proposed conductance cancellation techniques. In the proposed technique, four additional transconductance-stages (gm stages) are used to boost the gain of the main gm stage. The additional gm stages do not significantly increase the power dissipation. A prototype was designed in 65nm CMOS technology. It results in 81dB voltage gain, which is 21dB higher than the existing gain-boosting technique. The proposed op-amp works with as low a power supply as 0.8V, without compromising the performance, whereas the traditional gain-enhancement techniques start losing gain below a 1.1V supply. The circuit draws a total static current of 295μA and occupies 5000μm2 of silicon area.

    This paper was recommended by Regional Editor Piero Malcovati.