World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A High-Speed and Power-Efficient Approximate Adder for Image Processing Applications

    https://doi.org/10.1142/S0218126622500499Cited by:7 (Source: Crossref)

    Most image processing applications are naturally imprecise and can tolerate computational error up to a specific limit. In such applications, savings in power are achieved by pruning the data path units, such as an adder module. Truncation, however, may lead to errors in computing, and therefore, it is always a challenge between the amount of error that can be tolerated in an application and savings achieved in area, power and delay. This paper proposes a segmented approximate adder to reduce the computation complexity in error-resilient image processing applications. The sub-carry generator aids in achieving a faster design while carry speculation method employed improves the accuracy. Synthesis results indicate a reduced die-area up to 36.6%, improvement in delay up to 62.9%, and reduction in power consumption up to 34.1% compared to similar work published previously. Finally, the proposed adder is evaluated by using image smoothing and sharpening techniques. Simulations carried out on these applications prove that the proposed adder obtains better peak signal-to-noise ratio than those available in the literature.

    This paper was recommended by Regional Editor Emre Salman.