Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Ba-Wei-Xi-Lei powder is a classical herbal mixture, and is widely used for the treatment of oral ulcer and ulcerative colitis. This study aimed to explore the effect of Ba-Wei-Xi-Lei powder with enema application on ulcerative colitis in rats. Ulcerative colitis was induced by immunization with rabbit's colonic mucosal protein emulsified with Completely Freund's Adjuvant. The mucosal inflammatory reaction and ulcer have been observed in the model rats. Characteristic changes of ulceractive colitis include that CD4 lymphocyte increased in peripheral blood while CD8 lymphocyte decreased; CD8 lymphocyte and TNF-α expression area increased in colonic mucosa, while CD4 lymphocyte decreased. Ba-Wei-Xi-Lei powder and sulfasalazine with enema application could alleviate the pathological changes in the model rats. The results suggest that the pharmacological effects of Ba-Wei-Xi-Lei powder on ulcerative colitis in rats are similar to the effect of sulfasalazine.
The objective of this paper is to review the natural products and the pharmacological functions of Ganodermataceae family. Presently, studies on the bioactive components of Lingzhi are focused on polysaccharides and triterpenes/triterpenoids compounds. New Ganoderma polysaccharides, including their molecular weights, glycosyl residue compositions, glycosyl linkage and branches, are summarized in this paper. Also presented are new types of triterpenes and their characteristics from Lingzhi. Taking Ganoderma lucidum as an example, we reviewed its pharmacological functions in anti-tumor and immune-modulating activities for treating hypoglycemosis, hepatoprotection, and the effect on blood vessel system. Based on the advances in Lingzhi research in the past few decades, both G. lucidum and G. sinense are considered as the representative species of medicinal mushroom Lingzhi in China. Until 2001, G. tsugae was only advised to be used as the materials of the health products. The biologically-active components related to pharmacological functions of these three species were studied more than other Ganodermataceae family species; however, which have been used in less modern folk medicine.
Platycladus orientalis leaves (Cebaiye) have been used for thousands of years as traditional Chinese medicine (TCM). According to the theory of TCM, they are categorized as a blood-cooling and hematostatic herb. In clinical practice, they were usually prescribed with heat-clearing herbs to reinforce the efficacy of hemostasis. The review provides the up-to-date information from 1980 to present that is available on the botany, processing research, phytochemistry, pharmacology and toxicology of the leaves. The information is collected from scientific journals, books, theses and reports via library and electronic search (Google Scholar, Pubmed and CNKI). Through literature reports, we can find that the leaves show a wide spectrum of pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, disinsection, anticancer, diuretic, hair growth-promoting, neuroprotective and antifibrotic activities. Diterpene and flavonoids would be active constituents in P. orientalis leaves. Many studies have provided evidence for various traditional uses. However, there is a great need for additional studies to elucidate the mechanism of blood-cooling and hematostatic activity of the leaves. Therefore, the present review on the botany, traditional uses, phytochemistry and toxicity has provided preliminary information for further studies of this herb.
In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.
Penthorum chinense Pursh (Ganhuangcao), a traditional Chinese medicine, is used for the prevention and treatment of liver diseases, including hepatitis B, hepatitis C, and alcoholic liver damage. A wide range of investigations have been carried out on this herbal medicine from pharmacognosy to pharmaceuticals, as well as pharmacology. The extract of P. chinense was reported to have significant liver protective effects through anti-oxidation, reduction of key enzyme levels, inhibition of hepatitis B virus DNA replication, and promotion of bile secretion. Based on the current knowledge, flavonoids and phenols are considered to be responsible for P. chinense's bioactivities. The main purpose of this review is to provide comprehensive and up-to-date knowledge of the phytochemical and pharmacological studies performed on P. chinense during the past few decades. Moreover, it intends to provide new insights into the research and development of this herbal medicine.
Alisma orientale (Sam.) Juzep. (Alismataceae) is a traditional and famous Chinese medicinal herb. Its rhizomes, which possess versatile bioactivities, are commonly used to treat oliguria, edema, gonorrhea with turbid urine, leukorrhea, diarrhea and dizziness. Approximately 120 compounds have been isolated from A. orientale. Terpenoids have been identified as A. orientale’s characteristic constituents, which include protostane triterpenoids and guaiane sesquiterpenoids. The traditional medical uses of A. orientale in TCM have been evaluated in modern pharmacological studies, which have shown that A. orientale and its active constituents exhibit a wide range of bioactivities, such as diuretic, anti-urolithiatic, antinephritic, anti-atherosclerotic, immunomodulatory, and hepatoprotective activities. The medicinal potential of A. orientale makes it an ideal candidate for new drug development. Further studies are still required to identify its bioactive constituents, and elucidate the structure–activity relationship and detailed mechanisms of action. Additionally, the use of the other medicinal parts of A. orientale may reduce resource waste and afford novel secondary metabolites.
Kansui, the root of Euphorbia kansui T.N. Liou ex T.P. Wang, is a well-known traditional Chinese medicine. This paper reviews advances in investigations of the botany, the phytochemistry, the analytical method, the pharmacology and the toxicology of kansui. Nearly 100 compounds have been isolated from kansui and identified, and diterpenes and triterpenes are considered to be the characteristic and bio-active constituents of kansui. They possess multiple pharmacological activities, including diuretic, purgation, and antitumor effects. However, they also have a degree of toxicity, and can cause skin, oral, and gastrointestinal irritation. In this paper, the toxicity-efficacy relationship, attenuation and incompatibility of kansui are further discussed. Several future investigations of kansui are also proposed, all of which would improve the identification of kansui and other toxic herbs, as well as further their utilization.
The aim of the present review is to comprehensively outline the botanical description, traditional uses, phytochemistry, pharmacology and toxicology of Patrinia, and to discuss possible trends for the further study of medicinal plants from the genus Patrinia. The genus Patrinia plays an important role in Asian medicine for the treatment of erysipelas, conjunctival congestion with swelling and pain, peri-appendicular abscesses, lung carbuncle, dysentery, leucorrhea, and postpartum disease. More than 210 chemical constituents have been isolated and identified from Patrinia plants, especially P. scabiosaefolia Fisch., P. scabra Bunge, P. villosa Juss., P. heterophylla Bunge and P. rupestris(Pall.) Juss. Of these compounds, triterpenoids and saponins, iridoids, flavonoids, and lignans are the major or active constituents. Both in vitro and in vivo studies have indicated that some monomer compounds and crude extracts from the genus Patrinia possess wide pharmacological activities, including antitumor, anti-inflammatory, antibacterial, and antiviral effects. In addition, they have been shown to have valuable and positive effects on the immune and nervous system in experimental animals. There are also some reports on the clinical uses and toxicity of these species. However, few reports have been published concerning the material identification or quality control of Patrinia species, and the clinical uses and toxic effects of these plants are relatively sparse. More attention must be given to these issues.
Smilax glabra (SG) Roxb., a well-known traditional Chinese medicine, has been extensively used worldwide for its marked pharmacological activities for treating syphilitic poisoned sores, limb hypertonicity, morbid leucorrhea, eczema pruritus, strangury due to heat, carbuncle toxin, and many other human ailments. Approximately 200 chemical compounds have been isolated from SG Roxb., and the major components have been determined to be flavonoids and flavonoid glycosides, phenolic acids, and steroids. Among these active compounds, the effects of astilbin, which is used as a quality control marker to determine the quality of SG Roxb., have been widely investigated. Based on in vivo and in vitro studies, the primary active components of SG Roxb. possess various pharmacological activities, such as cytotoxic, anti-inflammatory and immune-modulatory effects, anti-oxidant, hepatoprotective, antiviral, antibacterial, and cardiovascular system protective activities. However, an extensive study to determine the relationship between the chemical compositions and pharmacological effects of SG Roxb. has not been conducted and is worth of our study. Improving the means of utilizing the effects of SG is crucial. The present paper reviews the ethnopharmacology, phytochemistry, and pharmacology of SG Roxb. and assesses its ethnopharmacological use in order to explore its therapeutic potential for future research.
The stems and roots of Marsdenia tenacissima (Roxb.) Wight et Arn., a traditional Chinese medicine and Dai herbal medicine, have been widely used for the treatment of asthma, trachitis, tonsillitis, pharyngitis, cystitis, pneumonia and drug or food poisoning. Nowadays, the extract of Marsdenia tenacissima, under the trademark of “Xiao-ai-ping”, is widely used in clinic for the treatment of different cancers in China. To date, approximately 196 chemical ingredients covering steroids, triterpenes and organic acids have been identified from different parts of this plant. Steroids are the major characteristic and bioactive constituents of this plant. Modern pharmacology has demonstrated that the crude extracts and steroids have various in vitro and in vivo pharmacological activities, such as multidrug resistance reversal, antitumor, anti-angiogenic, immunomodulation and anti-HIV activities. The multidrug resistance reversal of steroids provided evidence for the use of this herb in clinic. However, despite wide clinical application, clinical trials, quality control method, pharmacokinetic and toxicity research on Marsdenia tenacissima were seldom reported and deserved further efforts. The present review aimed to achieve a comprehensive and up-to-date investigation in ethnopharmacology, phytochemistry, pharmacology, clinical study, pharmacokinetics, toxicology and quality control of Marsdenia tenacissima. In addition, the possible perspectives and trends for future studies of Marsdenia tenacissima have also been put forward. It is believed that this review would provide a theoretical basis and valuable data for future in-depth studies and applications.
Eucommia ulmoides Oliver, a single species of Eucommia genus belonging to the Eucommiaceae family, is an endemic in China and has been used in traditional Chinese medicine for nearly two thousand years. Records from different historical periods highlight E. ulmoides and its officinal botanical parts, usefulness in adaptation to disease and its central role in Chinese medicine theory. There are also historical collection documents for minorities in China. Tearing the leaves, bark and fruit produces strands of latex; a description of E. ulmoides’s morphological features is recorded in this paper. This review summarizes 204 natural compounds isolated from this plant, which are divided into seven categories: lignans, iridoids, flavonoids, phenols, steroids, terpenes and others. These components possess wide-ranging pharmacological efficacies, such as antihypertensive, antihyperglycemic, antihyperlipidemia, anti-oxidative, anti-osteoporosis, antitumor, immunomodulatory and neuroprotective activities. This review aims to provide a reference for extensive researches of E. ulmoides crude drugs, especially for quality control, biosynthesis and structure modification of active ingredients and pharmacological mechanism.
The present review is aimed at providing a comprehensive summary of the botanical characteristics, ethnomedicinal uses, phytochemical, pharmacological, and toxicological studies of the genus Ajuga L. The extensive literature survey revealed Ajuga L. species to be a group of important medicinal plants used for the ethnomedical treatment of rheumatism, fever, gout, sclerosis, analgesia, inflammation, hypertension, hyperglycemia, joint pain, palsy, amenorrhea, etc., although only a few reports address the clinical use and toxicity of these plants. Currently, more than 280 chemical constituents have been isolated and characterized from these plants. Among these constituents, neo-clerodane diterpenes and diterpenoids, phytoecdysteroids, flavonoids, and iridoids are the major bioactive compounds, possessing wide-reaching biological activities both in vivo and in vitro, including anti-inflammatory, antinociceptive, antitumor, anti-oxidant, antidiabetic, antimicrobial, antifeedant, antidiarrhoeal, hypolipidemic, diuretic, hypoglycaemic, immunomodulatory, vasorelaxant, larvicidal, antimutagenic, and neuroprotective activity. This review is aimed at summarizing the current knowledge of the ethnomedicinal uses, phytochemistry, biological activities, and toxicities of the genus Ajuga L. to reveal its therapeutic potentials, offering opportunities for future researches. Therefore, more focus should be paid to gathering information about their toxicology data, quality-control measures, and the clinical application of the bioactive ingredients from Ajuga L. species.
Anti-oxidant refers to such a kind of endogenous or exogenous compound that is able to retard or even prohibit in vivo or in vitro oxidation with only small amount being used. The study of anti-oxidants starts nearly 30 years ago, and the research on this topic in China almost begins simultaneously with that in the world. Gratifyingly, contributions on anti-oxidants from China researchers have rapidly increased in the recent decade as anti-oxidants have become a hot topic in biochemistry, pharmacology, food science, chemistry as well as other related disciplines. Anti-oxidants provide a specific viewpoint for clarifying pharmacological effects of Chinese medicinal herbs. For example, as a traditional Chinese medicinal herb, Panax ginseng C. A. Meyer is found to be a natural anti-oxidant resource. Meanwhile, some signaling pathways such as nuclear factor-κB (NF-κB), nuclear factor erythroid 2 related factor 2 (Nrf2), and Kelch-like ECH associated protein 1 (Keap1) are regarded to play an important role in anti-oxidant responses. These findings provide a substantial basis for understanding the pharmacological behaviors of Chinese medicinal herbs in view of regulating the aforementioned signaling pathways. Moreover, inhibition of reactive oxygen species (ROS) by supplementation of anti-oxidant becomes a popularly accepted idea in keeping health and treating diseases. Isolations of antio-xidative ingredients from medicinal herbs and foods lead to set up a large range of anti-oxidative compound libraries, and intake of anti-oxidants from foods may be the most efficient way for supplementing exogenous anti-oxidants. On the other hand, designing anti-oxidants with novel structures motivates organic and medicinal chemists to explore the structure–activity relationship, and then, to find novel structural features with anti-oxidative properties. Therefore, it is reasonable to believe that China researchers will donate more endeavors to obtain more achievements on anti-oxidants in the future.
Veronica is the largest genus in the flowering plant family Plantaginaceae and comprises approximately 500 species. The genus was formerly placed in the Scrophulariaceae family, some species of which have been used in traditional medicine for the treatment of influenza, respiratory diseases, hemoptysis, laryngopharyngitis, cough, hernia, cancer, edema, and wounds. This review comprehensively summarizes the current information on the traditional uses, phytochemistry, and pharmacology of the genus Veronica on the basis of articles published from 1970 to 2018. More than 260 compounds have been isolated, and chemotaxonomic investigations of Veronica have revealed that iridoid glucosides — including aucubin, catalpol, and 6-O-catalpol derivatives — are characteristic of this genus. Modern pharmacological studies and clinical practice have demonstrated that extracts or monomeric compounds from Veronica have several pharmacological actions, such as anti-inflammatory, anti-oxidative, anticancer, antibacterial, anti-angiogenic, antineurodegenerative, neuroprotective, and hepatoprotective effects both in vivo and in vitro.
The genus Saururus, belonging to Saururaceae, contains two species, S. cernuus L. and S. chinensis (Lour) Baill. with common utilization in traditional medicine from Asia to North America for the treatment of edema, beriberi, jaundice, leucorrhea, urinary tract infections, hypertension, hepatitis diseases, and tumors. An extensive review of literature was made on traditional uses, phytochemistry, and ethnopharmacology of Saururus using ethno-botanical books, published articles, and electronic databases. The 147 of chemical constituents have been isolated and identified from S. cernuus and S. chinensis, and lignans, flavonoids, alkaloids, anthraquinones, saponins, and phenols are the major constituents. Various pharmacological investigations in many in vitro and in vivo models have revealed the potential of the genus Saururus with anti-inflammatory, antitumor, anti-oxidant, hepatoprotective, antimelanogenic, lipid-lowering, and bone protective activities, supporting the rationale behind numerous of its traditional uses. Due to the noteworthy pharmacological properties, Saururus can be a better option for new drug discovery. Data regarding many aspects of this plant such as toxicology, pharmacokinetics, quality-control measures, and the clinical value of the active compounds is still limited which call for additional studies.
Proanthocyanidins (PAs) are a group of polyphenols enriched in plant and human food. In recent decades, epidemiological studies have upheld the direct relationship between PA consumption and health benefits; therefore, studies on PAs have become a research hotspot. Although the oral bioavailability of PAs is quite low, pharmacokinetics data revealed that some small molecules and colonic microbial metabolites of PAs could be absorbed and exert their health beneficial effects. The pharmacological effects of PAs mainly include anti-oxidant, anticancer, anti-inflammation, antimicrobial, cardiovascular protection, neuroprotection, and metabolism-regulation behaviors. Moreover, current toxicological studies show that PAs have no observable toxicity to humans. This review summarizes the resources, extraction, structures, pharmacokinetics, pharmacology, and toxicology of PAs and discusses the limitations of current studies. Areas for further research are also proposed.
Chrysanthemum indicum L. (C. indicum L.), a member of the Compositae family, is a perennial plant that has been used as a traditional medicine for more than 2000 years in China and is widely used for the treatment of Pemphigus, swelling, pain, and scrofula. To date, more than 190 chemical constituents have been isolated and identified from this plant, including flavonoids, terpenoids, phenylpropanoids, and phenolic acids. Numerous modern studies have shown that extracts or monomeric compounds from C. indicum L. have several pharmacological activities, such as anti-inflammatory anti-oxidation, antipathogenic microorganism, anticancer, immune regulation, and hepatoprotective effects. However, resource availability, the research on the mechanism, and quality control are still insufficient, which deserves further efforts. In this paper, the advances in botany, phytochemistry, and pharmacology of C. indicum L were reviewed. We hope that this review can provide important information for traditional Chinese medicine, phytochemistry, synthetic and medicinal chemistry researchers for making full use of C. indicum L. resource.
Dragon’s blood (DB) refers mainly to the crimson resin of many Dracaena spp. DB has been used by different traditional medicine systems worldwide, including Arabic medicine, African medicine, traditional Chinese medicine, Thai medicine, etc. DB are mainly used to heal wounds, kill pain, stop bleeding, and cure various diseases such as diarrhea, dysentery and ulcers for over 1000 years. 11 Dracaena spp. and 3 subspecies are reported to be able to produce red resin. However, the resources are extremely deficient. Several Dracaena spp. are in threatened status. Over 300 compounds have been isolated from Dracaena spp., mainly including flavonoids, steroids, and phenolics. DB exhibits anti-inflammatory, analgesic, antithrombotic, anti-oxidant, antimicrobial, antidiabetic, and anticancer properties, which explain its wound healing effects, preventive effects on cardiovascular and cerebrovascular diseases, dual-directional regulation of blood flow, neuroprotection and radioprotective effects. No apparent side effects or toxicity have been reported. DB are restricted from being exploited due to limited resources and unclear resin formation mechanism. It is necessary to expand the cultivation of Dracaena spp. and fully understand the mechanism underlying the resin formation process to develop an effective induction method for the sustainable utilization of DB.
Breviscapine is one of the extracts of several flavonoids of Erigeron breviscapus. Scutellarin is the main active component of breviscapine, and the qualitative or quantitative criteria as well. Scutellarin and its analogs share a similar skeleton of the flavonoids. Breviscapine has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease (CHD), and angina pectoris. Breviscapine has a broad spectrum of pharmacological activities, such as increasing blood flow, improving microcirculation, dilating blood vessels, decreasing blood viscosity, promoting fibrinolysis, inhibiting platelet aggregation, and thrombosis formation, etc. In addition, breviscapine and its analogs have significant value for drug research and development because of the superiority of those significant bioactivities. Furthermore, an increasing number of pharmacokinetic studies have explored the mechanism of scutellarin and its analogs. To provide a comprehensive understanding of the current research on breviscapine, scutellarin, and the analogs, the structural features, distribution situation, preparation method, content determination method, clinical applications, pharmacological action as well as pharmacokinetics are summarized in the present review.
Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.